
GEOPHYSICS, VOL. 71, NO. 2 (MARCH-APRIL 2006); P. V31–V40, 15 FIGS.
10.1190/1.2187804

A technique for identifying microseismic multiplets
and application to the Valhall field, North Sea

Stephen J. Arrowsmith1 and Leo Eisner2

ABSTRACT

A fast, fully automatic technique to identify micro-
seismic multiplets in borehole seismic data is developed.
The technique may be applied in real time to either con-
tinuous data or detected-event data for a number of
three-component receivers and does not require prior
information such as P- or S-wave time picks. Peak cross-
correlation coefficients, evaluated in the frequency do-
main, are used as the basis for identifying microseismic
doublets. The peak crosscorrelation coefficient at each
receiver is evaluated with a weighted arithmetic average
of the normalized correlation coefficients of each com-
ponent. Each component is weighted by the maximum
amplitude of the signal for that component to reduce
the effect of noise on the calculations. The weighted av-
erage correlations are averaged over all receivers in a
time window centered on a fixed lag time. The size of
the time window is determined from the dominant pe-
riod in the signal, and the lag time is the time that maxi-
mizes the average correlation coefficient. The technique
is applied to a three-component passive seismic data set
recorded at the Valhall field, North Sea. A large num-
ber of microseismic doublets are identified that can be
grouped into multiplets, reducing the total number of
absolute event locations by a factor of two. Seven large
multiplets reflect the repeated multiple rerupturing (up
to 30 times on a single fault) and significant stress re-
lease. Two major faults dominate the seismic activity,
causing at least one-fourth of the observed events.

INTRODUCTION

Microseismic events (small earthquakes and acoustic emis-
sions) can be induced in hydrocarbon reservoirs as a result of
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the changing stress distribution resulting from oil extraction
or hydraulic fracturing. They can occur anywhere in the reser-
voir or surrounding rock, but often they rerupture the same
fault. In such a case, the events may have similar hypocenter
locations and focal mechanisms, producing similar recordings
at receivers. Two such similar events are called doublets, and a
group of more than two similar events is called a multiplet. We
define a multiplet as a cluster of n events (n ≥ 2) where each
event is a doublet with at least one other event in the mul-
tiplet. We feel this is a more natural definition for multiplets
than the requirement that all events in a multiplet be mutually
similar. Multiplets were first observed in natural earthquakes
(Geller and Mueller, 1980), and the recorded events are corre-
lated only for limited durations and for low-pass filtered data.
For highly heterogeneous media, high waveform correlation
is conditional upon events having similar source mechanisms
and point-source-location separations less than one-fourth of
the dominant wavelength. The doublet definition is therefore
frequency dependent. Furthermore, two events comprising a
doublet are similar only over a limited-time interval because
multiple scattered late-arriving waves reflect small discrepan-
cies in source radiation or position.

Multiplets have many practical uses. First, the similarity of
waveforms in multiplets may be exploited to locate events rel-
ative to each other (Poupinet et al., 1984; Moriya et al., 1994;
Waldhauser and Ellsworth, 2000). Such locations can provide
a much higher relative location precision than is achieved from
absolute locations and can be used to identify fault zones
that are not apparent with absolute locations (Moriya et al.,
1994) or to estimate fracture density (Lees, 1998). Multiplets
can be also used to monitor the reactivation of faults, frac-
tures, or flow obstacles during hydrofracturing (e.g., Rutledge
et al., 2004). They can provide information on the noise level
in the data by separating signal and noise. Perhaps the most
important advantage is that multiplet identification lets us
group events of the same origin based on the physics of the
source.
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Figure 1 is a proposed scheme for the real-time location of
microseismic events. Crosscorrelating every event with every
other event in a data set would scale with the square of the
number of events and would quickly cause the algorithm to
become very expensive (J. Rickett, 2005, personal communi-
cation). The scheme in Figure 1 avoids this problem. When
a microseismic event is detected, the waveform is compared
with a library of master events to determine if the event is a
doublet of a master trace. If the event is not the doublet of a
master trace, it is located using a conventional location algo-
rithm and added to the library of master events. If the event is
the doublet of a master trace, it is located relative to a master
event for that group. Next, if the event has a higher S/N ratio
than the master event, it replaces the old master.

For tectonic earthquakes, multiplets are especially common
in the creeping zones of faults (e.g., Nadeau et al., 1995; Wald-
hauser and Ellsworth, 2000; Stich et al., 2001). Multiplets also
are observed commonly during hydraulic fracture monitor-
ing in hot, dry rocks (e.g., Lees, 1998; Li et al., 1998; Fréchet
et al., 1989; Moriya et al., 2003) or oil and gas reservoirs (e.g.,
Moriya et al., 1994; Rutledge and Philips, 2003). Multiplet
analyses from large industrial data sets require the identifica-
tion of multiplets in a data set. The practical real-time applica-
tion of multiplet identification in large data sets, such as those
recorded in hydraulic fracturing, requires a fully automatic,
fast technique. Previous techniques for the automatic detec-
tion of multiplets (Maurer and Deichmann, 1995; Cattaneo
et al., 1999; Stich et al., 2001; Schaff and Richards, 2004) fo-
cus on earthquake seismology and use receivers distributed on
the free surface of the earth. These studies use data recorded
at networks of seismic receivers. Only the vertical compo-
nents of the recorded wavefields are used on account of gen-
erally worse S/N ratios on horizontal components. In every

Figure 1. A decision tree for the real-time application of the
multiplet-identification algorithm in analyses of microseismic
events.

case, they use preprocessed data with prepicked P- and S-wave
phases.

We present a novel identification technique for identify-
ing multiplets which is suitable for borehole data sets such as
those recorded during hydraulic fracturing or passive seismic
monitoring, and it uses all three components. Using all three
components helps to compensate for the lack of receiver dis-
tribution (compared to surface seismic data sets) and is a natu-
ral generalization to borehole data where there is no preferred
component. The technique does not require previously picked
P- or S-wave arrivals. We then apply the technique to a passive
seismic data set recorded in the Valhall field, North Sea.

TECHNIQUE FOR IDENTIFYING DOUBLETS

We define a doublet as two events that have highly corre-
lated waveforms. Thus, the time and polarization of the P- and
S-waves are very similar, and we use the crosscorrelation coef-
ficient to help identify doublets. The normalized crosscorrela-
tion coefficient is evaluated in the frequency domain by anal-
ogy with the convolution theorem (Ifeachor and Jervis, 1993).
For two traces, x1(t) and x2(t), the normalized crosscorrelation
function may be evaluated as

Cx(τi) = F−1
D (X∗

1(f )X2(f ))√∑
x2

1 (t)
∑

x2
2 (t)

, (1)

where F −1
D denotes the inverse discrete Fourier transform,

X∗
1(f ) is the complex conjugate of the Fourier transform of

x1(t), and X2(f ) is the Fourier transform of x2(t).
The information provided by three-component receivers is

exploited in such a way that the effect of noise on the calcula-
tions is down weighted. This is particularly important when we
apply this algorithm in real-time processing to randomly ori-
ented borehole receivers. A simple crosscorrelation of com-
ponents with low S/N ratios may distort the averaged coeffi-
cient. Assuming the maximum amplitude of each component
reflects the S/N ratio, we average the normalized crosscor-
relation functions from all components with a weight of the
maximum amplitude on each component. Subsequently, for
receiver i, the signal weighted average of the crosscorrelation
functions from the different components is given by

CRi(τi) = AxCx(τi) + AyCy(τi) + AzCz(τi)
Ax + Ay + Az

, (2)

where Cx, Cy, Cz are the normalized crosscorrelation func-
tions for each component; Ax, Ay,Az are the maximum ampli-
tudes for each component; and τi is the lag time of the cross-
correlation for the ith receiver. Here, all times are defined as
when the events are actually recorded. Amplitude weighting
significantly reduces the effect of noise in our computations
by down-weighting components where the S/N ratio is poor.

When multiple receivers exist, the peak crosscorrelation co-
efficient for two events in a doublet occurs at the same time lag
at each receiver within a time window of length �t . The time
window �t is less than one-fourth of the dominant period in
the signal, because we define a doublet as two similar events
with a maximum event separation of one-fourth of the dom-
inant wavelength. We find the peak crosscorrelation coeffi-
cient C for all receivers by averaging the peak crosscorrelation
functions for each separate receiver for τi within one-fourth
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period. Therefore, we seek to find the coefficient given by

C = max
τi




m∑
i=1

CRi(τi)

m




, (3)

where CRi is the peak crosscorrelation function for the ith re-
ceiver; τi = τ ± �ti for all i, the lag times of the crosscorrela-
tion (where i = 1, . . . , m); and m is the number of receivers.

This technique identifies doublets at different correlation
threshold levels dependent on the application; e.g., automated
processing may use a higher threshold to ensure waveforms
are consistent, while a lower threshold may be used for man-
ual preprocessing and a detailed study of the connectivity
and relative relations between different multiplet groups. The
technique should use a time window that encompasses the P-
and S-wave arrivals to correlate both direct waves from the
sources. Time-windowing of the data eliminates multiple scat-
tered incoherent waves and parts of the records with noise
(such as signal before the P-wave arrival). In addition, low-
pass filtering can eliminate high-frequency noise that would
decrease the crosscorrelation coefficients between doublets.
The peak crosscorrelation coefficients are dominated by large
amplitudes (effectively squared traces); therefore, the corre-
lation will be small if there is a small phase shift between two
large arrivals in the recordings. This can be true for recordings
of a doublet with a different P- to S-wave traveltime delay and
comparable amplitudes of P- and S-waves.

To identify doublets with larger shifts and comparable am-
plitudes of P- and S-waves, we need to use a lower thresh-
old or modify the technique and evaluate the crosscorrela-
tions on prepicked P- and S-waveforms independently. This
implementation could improve the algorithm and would in-
crease the number of identified multiplets. However, it would
better suit a more complex study of multiplets (not real-time
analysis).

The definition of doublet is largely subjective because the
requirement of similarity may depend upon the specific appli-
cation. Furthermore, doublet identification is dependent upon
the data bandwidth and upon the complexity of the medium
between the sources and receivers. However, to identify dou-
blets automatically, we require some threshold measure of
similarity. One way to determine such a threshold is to con-
duct a synthetic test using a realistic bandwidth and noise dis-
tribution.

DETERMINING A DOUBLET
DETECTION THRESHOLD: APPLICATION

TO A SYNTHETIC DATA SET

We have applied the technique described above to a synthe-
tic data set with a range of known event locations and source
mechanisms. The 3D synthetic model used in this test con-
tains a layered structure typical of sedimentary basins with
an additional 3D body. Three receivers are located at 50-m
intervals along a vertical line to simulate a borehole acqui-
sition. Twenty source locations are used. For each location
we simulate seven different source mechanisms. Waveforms
are computed using a finite-difference algorithm with five spa-
tial gridpoints-per-minimum wavelength at 100 Hz and a delta
source-time function (Figure 2). The data are filtered using

a band-pass Butterworth filter between 5 and 100 Hz. We
evaluate the peak crosscorrelation coefficient of equation 3
for every event pair in the data set using the technique out-
lined above. Only events with the same source mechanisms
are crosscorrelated. The length of the time windows used is
300 ms.

Figure 3 shows the resultant plot of peak crosscorrelation
coefficient C(τ ) against the spatial separation between every
event pair. In this data set the dominant frequency in the
seismograms is approximately 100 Hz, as shown in Figure 4;
therefore, the one-fourth wavelength maximum separation of
doublets is 10 m for an average S-wave velocity of 4000 m/s
at the source region. Figure 3 shows that for most all events
separated by less than 10 m, the peak crosscorrelation coef-
ficients of equation 3 are greater than 0.9. At greater event

Figure 2. Particle acceleration synthetic seismograms for two
events identified as doublets with no added noise.

Figure 3. The peak crosscorrelation coefficients of equation 3
obtained for each pair of events, plotted against the event sep-
aration. A threshold of 0.9 separates event pairs closer than 10
m apart (doublets) from event pairs separated by greater dis-
tances. Only the positive coefficients are shown. There are no
negative coefficients at event separations less than 10 m in any
of the cases.
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separations, where the event pairs are not doublets, and the
peak crosscorrelation coefficients are generally lower than

Figure 4. Spectrogram illustrating the frequency content of a
typical synthetic seismogram used in this experiment.

Figure 5. The peak crosscorrelation threshold for identifying
doublets versus noise level in the data.

Figure 6. Schematic showing the concept of the clustering al-
gorithm used to identify families of doublets (multiplets). The
lettered boxes represent seismic events, and the lines connect-
ing events represent identified doublets.

0.9. Therefore, a peak crosscorrelation threshold of 0.9 would
identify 97% of the doublets in this synthetic data set.

The threshold of 0.9 also identifies a few event pairs with
separations between 10 and 50 m as multiplets. Since these
events lie at greater separations than one-fourth of the domi-
nant wavelength, they are not technically doublets. However,
the relative location algorithm may still be able to locate them
because the waveforms are similar and relative P-to-S-wave
times can be determined. The waveforms in this synthetic data
set are probably simpler than real data because the synthetic
model does not represent the complexity of the real earth.

To apply this algorithm to real data, we must study the ef-
fect of noise on the peak crosscorrelation coefficients. Ran-
dom noise has been added to the data with a standard devi-
ation scaled by the maximum amplitude of the seismograms.
Different S/N ratios have been studied to examine the effect of
varying noise on the threshold for identifying doublets. With
increasing noise level, the magnitude of the peak crosscorrela-
tion coefficients decreases, and subsequently we need to lower
the threshold for identification of doublets. This is shown in
Figure 5, which is a result of multiple numerical tests with in-
creasing synthetic noise level. Beyond a 20% noise level, this
technique becomes unsuitable for identifying doublets.

CLUSTERING DOUBLETS INTO MULTIPLETS

Similar groups of doublets are clustered into larger fami-
lies called multiplets using graph theory. Previous publications
(e.g., Maurer and Deichmann, 1995) use an N × N matrix
(where N is the number of events) to visualize the doublets
among the events in the data set. The multiplets are then se-
lected manually. We present a new method for clustering the
doublets into multiplets. Multiplet identification is the same
as a search through a graph, with the events represented by
the nodes of a graph and the identified doublets represented
by the edges connecting the nodes. The connected part of this
graph is the multiplet. Our definition of multiplets does not
require mutual similarity among all events within a multiplet
but allows for chainlike similarity. This is particularly suitable
for hydraulic fracture monitoring where similar faults are acti-
vated as the fracturing progresses (Rutledge et al., 2004). For
example, in Figure 6 node (event) A is directly connected with
(the doublet of) nodes D, E, and F but not nodes J, K, or L.
However, all of the nodes are part of the same multiplet. The
connected part of a graph can be sought using the breadth-first
search algorithm (Weiss, 1994), where the cost function is zero
if the vertices are connected and a finite number if vertices are
disconnected.

APPLICATION TO VALHALL FIELD, NORTH SEA

The Valhall field, located in the Norwegian part of the
North Sea, has been in production since 1982. The field is an
overpressured, undersaturated Upper Cretaceous chalk reser-
voir that forms a double-plunging north-northwest–south-
southeast anticline. The reservoir suffers from significant com-
paction and subsidence of the overburden from extraction of
oil. For a summary of the Valhall field, including maps and
details of the geology and field operations, see, e.g., Barkved
et al. (2003).
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Data set

To understand stress regimes in the field, a microseismic ex-
periment was undertaken in 1998. Kristiansen et al. (2000)
provide a detailed discussion of the experiment. Six CGG-
SST500 three-component instruments were placed in a bore-
hole at 2200–2300 m depth. Because of a restriction in the
borehole, all instruments were located above the recorded
events, which were at depths of 2370–2390 m. The instru-
ments were operated on a triggering algorithm designed to
store only events with a good S/N ratio. During the 57-day
monitoring period, 572 events were detected, of which 324
events could be reliably located. There appears to be a high
attenuation layer of the low-velocity sequence between the
geophones and the reservoir, which means that only nearby
or very high-energy events were detected. Dyer et al. (1999)
and Zoback and Zinke (2002) found that all the events unre-
lated to the drilling process were located within a 50-m-thick
zone. Their analysis of event locations indicated two dominant
structures. Zoback and Zinke (2002) inverted focal mecha-
nisms and found a significant normal-faulting component of
the induced events consistent with production-induced stress
changes. We do not discuss the absolute or relative locations
of microseismic events in this article. For maps showing the
locations of events and receivers in the data set, refer to Dyer
et al. (1999), Kristiansen et al. (2000), and Zoback and Zinke
(2002).

Figure 7 shows a doublet identified in this data set. The seis-
mic traces were low-pass filtered with a Butterworth filter us-
ing a cutoff frequency of 30 Hz. The two traces have match-
ing waveforms of the P- and S-waves. To obtain such a close
match of P- and S-waveforms, both in P-to-S-wave time and
phase, the sources need to be at an almost identical location
and have very similar source mechanisms. The near-source
heterogeneity and the scattered (indirect) arrivals may vary
with small changes in the source position (or mechanism). This
is seen in Figure 7 for the phases arriving both between the P-
and S-waves and after the S-waves.

Preprocessing the data

The data are preprocessed first by taking a time window to
eliminate multiply scattered incoherent waves and parts of the
records with noise (such as signal before the P-wave arrival).
Then we low-pass filter with various frequency thresholds. The
time interval for crosscorrelations is set to contain both P- and
S-wave arrivals since their similarity is needed for calculating
relative locations. To do this in an automated fashion, we man-
ually estimate the maximum P-to-S-wave traveltime tPS and
automatically find the time of arrival of the maximum ampli-
tude (using data from all three components), ta . Then we set
the time window in which we calculate crosscorrelations to be
(ta − tPS, ta + tPS). Even if the maximum amplitude is the P-
wave arrival, the correlated signal will contain the S-wave ar-
rival. In any case, such a time interval contains the best S/N
ratio of the recording, as the time window is centered on the
maximum amplitude.

This study has used the 318 locatable events from the 572
events detected during the Valhall experiment. However, the
waveforms of 59 of the 318 events were corrupted, so we
removed them from our analysis. Therefore, we only used

259 events for doublet detection. Receiver six was very noisy
(probably from poor coupling) and has been omitted from the
study. For each event, 10 000 data points were recorded at a
sampling frequency of 1000 Hz. The time lag between P- and
S-wave arrivals at each receiver is typically around 0.4 s. Fig-
ure 8 shows a typical amplitude spectrum of the recorded data.
The amplitude spectra of the signal usually peak below 30 Hz.
Thus, there is a large amount of redundant data, both in time
(long records with no signal) and in frequency (data are over-
sampled). The time intervals with no signal are comprised of
uncorrelated noise, and these would downward bias our peak

Figure 7. Components of particle velocity for an identified
doublet (events 54 and 61). The P-wave arrival is at approx-
imately 0.12 s and the S-wave arrival is at 0.46 s. The x-, y-,
z-components have no specific meaning, except that they are
mutually orthogonal (coordinates were not rotated). The seis-
mograms were low-pass filtered at 30 Hz.
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crosscorrelation coefficients. Analogously, the high-frequency
noise above 60 Hz would also decrease the crosscorrelation
coefficients between doublets.

To speed up the algorithm and avoid correlating noise,
we time window, low-pass filter, and resample the data. We

Figure 8. Amplitude spectrum of a typical event recorded at
the Valhall data set.

Figure 9. Histograms showing the quantities of traces with dif-
ferent noise levels (measured as a percentage of the maximum
amplitudes) for low-pass Butterworth filtering at 30 and 60 Hz.

low-pass filter the data using a Butterworth filter and then
search for the maximum waveform amplitude on each recei-
ver. This amplitude is contained typically within the S-wave
waveform. The technique then takes a time window of data
around the maximum amplitude. A time window of 1 s (0.5 s
either side of the maximum) always contains both the P- and
S-wave arrivals. Finally, we resample the data to reduce the
frequency redundancy after low-pass filtering. The resampling
rate is set to have five samples for the shortest period set by
the low-pass filter threshold. Preprocessing reduces the num-
ber of data points in each trace to 334 when low-pass filtering
at 60 Hz and to 167 when low-pass filtering is at 30 Hz.

Results

The synthetic test shows that the doublet detection thresh-
old is dependent upon the level of noise in the data. To eval-
uate the noise level in the Valhall data set, we filter the traces
and compute the ratio of the standard deviation of the noise
to the maximum amplitude of each trace to mimic the noise
definition of the synthetic data set. The standard deviation
of the noise is computed in a time interval before the on-
set of the P-wave. The noise level depends on the frequency
band contained in the data. In general, the narrower the fre-
quency band, the more similar the waveforms and the lower
the S/N ratio. To compensate for this when using a lower max-
imum frequency in the data, we need to increase the detection
threshold.

However, for a constant S/N level and threshold, the lower
the maximum frequency contained in the data, the larger the
number of sources classified as doublets (because we effec-
tively increase the one-fourth wavelength criterion for the dis-
tance between two events within a doublet). Therefore, we
seek the lowest limit of low-pass filtering that gives us a good
S/N ratio in the recorded data. Figure 8 illustrates that the S/N
ratio is constant for low-pass filtering above 60 Hz. Further-
more, Figure 9 shows that low-pass filtering at 60 and 30 Hz
has a similar effect on the S/N ratios (because most of the sig-
nal is below 30 Hz). To show the effect of the low-pass fil-
tering, we identifiy doublets using low-pass filter limits at 60
and 30 Hz. Therefore, for the same threshold of similarity,
the algorithm would identify more doublets for data filtered
to a maximum frequency of 30 Hz. In this study the analysis of
doublets is focused on data that have been low-pass filtered at
30 Hz. Figure 9 shows that there is variable noise, with most
traces containing less than 5% noise but some traces as much
as 32%. The average noise level is 4%. However, the peak
crosscorrelation coefficient between two traces containing dif-
ferent noise levels is dominated by the trace with higher noise
level. The choice of 0.8 gives good identification of multiplets
in this study based on similarity of the P- and S-waves in iden-
tified doublets.

The algorithm, run on the full data set (for 777 traces of the
259 events), took 2–3 hours to run on a single Solaris 8 pro-
cessor (clock speed of 300 MHz). The number of earthquake
doublets identified using low-pass filtering at 60 Hz was 170
with a threshold of 0.8. A threshold of 0.9 would have found 61
earthquake doublets, and a threshold of 0.7 would have iden-
tified 439 doublets. Using low-pass filtering at 30 Hz, the algo-
rithm identified 271 doublets with a threshold of 0.8, 75 with a
threshold of 0.9, and 842 with a threshold of 0.7. As discussed
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earlier, the thresholds of 0.9, and 0.8 consistently identify
doublets with similar waveforms of P- and S-waves as needed
for relative location. For the rest of this study, we use a thresh-
old of 0.8 to identify the doublets.

Using this threshold, the algorithm identifies 115 out of the
259 events as members of multiplets or doublets when low-
pass filtered at 60 Hz, and 130 events when low-pass filtered
at 30 Hz. The largest multiplet identified with low-pass filter-
ing at 60 Hz contained 22 events, and with low-pass filtering at
30 Hz, the largest multiplet contained 31 events. The number
of absolute locations it is necessary to compute is equals the
number of events that are not members of multiplets or dou-
blets plus the total number of multiplets and doublets. The
remaining locations can be computed relative to those abso-
lute locations. With low-pass filtering at 60 Hz, there are 28
multiplets and 144 single events (259 − 115). Therefore, 172
absolute locations (144 + 28) and 87 relative locations (115 −
28) would be required. About 33% of the locations could be
calculated using a relative location technique. With low-pass
filtering at 30 Hz, there are 129 single events and 22 multi-
plets. Thus, we need 151 absolute locations, i.e., about 60%
of the 259 absolute locations that would be required without
identification of multiplets.

Figure 10 shows the distribution of the number of multi-
plets with respect to the number of events in each multiplet
with low-pass filtering at 30 Hz. There is a large number of
individual doublets (14), and there are five multiplets with 6
to 8 events and two large multiplets with 30 and 31 events
each. Low-pass filtered seismograms of one of the medium-
sized (seven events) multiplets are shown in Figure 11. The
waveforms show a high degree of similarity from trace to
trace on all components. The seismograms were aligned on
the maximum crosscorrelation of the x-component, but all of
the components show excellent alignment. The S- wave has
the largest amplitude and dominates the crosscorrelation. The
weaker P-wave signals are also similar and show the same
polarity for all events of this multiplet. The variation in the
P- to S-wave traveltime among the events within this multi-

Figure 10. Histograms showing the number of multiplets as a
function of the number of events in each multiplet. Low-pass
filtering at 30 Hz and a threshold of 0.8 were used for doublet
detection.

plet determines the relative distance between events. For this
multiplet, we see no variation in the relative arrivals of P-
waves within 0.01 s. With this upper limit we can estimate the
relative distance of events within the multiplet. In a homoge-
neous isotropic medium the absolute distance of two events
from a receiver is

xa = (tas − tap)
1
β

− 1
α

and xb = tbs − tbp

1
β

− 1
α

. (4)

Here, xa is the distance to the first event (a), and ta
p and ta

S are
the arrival times of the P- and S-waves, respectively, for the
first event. Analogous notation is used for the second event
(b); α and β are the P- and S-wave velocities, respectively.
For two events in a multiplet, we assume the variation in the
P- to S-wave time is from the relative distance in a homoge-
neous source region with velocities α and β. Thus, the relative

Figure 11. Three components of the particle velocity for the
medium-sized multiplet four recorded on the second receiver
(seven events). The numbers on the right side of each trace
correspond to the size of the true maximum amplitude (in mi-
crons/second) before rescaling to unit size for plotting. The
black vertical lines with letters P and S represent approximate
P- and S-wave arrival. Seismograms were low-pass filtered at
30 Hz. (a) x-component, (b) y-component, (c) z-component.
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distance between events a and b is

dx =
(
tbS − tbP

) − (
taS − taP

)
1
β

− 1
α

. (5)

This is a minimum distance. If the sources are perpendicular
to raypaths from the receiver array (typical borehole acquisi-
tion), the relative distance can be larger because it does not
project to the relative P-to-S-wave times but to polarization
of the arriving waves. The velocities in the source region of
the Valhall data set can be estimated as the velocities of the
Balder geologic interval (Dyer et al., 1999): α = 2100 m/s and
β = 750 m/s. Therefore, the distances between events within
this multiplet (four) are less than 12 m.

If two events are perfect doublets, then their particle mo-
tions will be scaled relative to each other; i.e., if the maximum
amplitude of the x-component of event a is twice as big as the
maximum amplitude of the x-component of event b, then the
same should be valid for the y- and z-components. This is ap-
proximately true for the multiplet shown in Figure 11 (refer
to the numbers on the right of the traces). We can also com-
pare the relative sizes of ruptured areas within the cluster by
taking the ratios of observed seismograms. The scaling of seis-
mograms varies up to a factor of five between events four and
six. The seismic moment is linearly proportional to recorded
amplitudes. Therefore, the seismic moment varies by a fac-
tor of five between events four and six. For a constant-stress
drop, the source radius is proportional to the third root of the
moment (assuming a circular source). Therefore, the source
radius varies by a factor of 1.7, and the source area varies by a
factor of three.

Figure 12 illustrates the connectivity of the multiplet of Fig-
ure 11. Events in this multiplet are mutually similar. The least
connected event is event seven, which does not show the same
scattering after the S-wave arrival as the other events (see y-
and z-components of Figure 11). This event is also the least
correlated on several other receivers (Figure 11 represents
only the second receiver). For example, for receiver one, the
P-to-S traveltime is slightly different from the rest of the mul-
tiplet, indicating the event has a greater relative distance from

Figure 12. Connectivity of the multiplet shown in Figure 5.
Each event is represented by a numbered square, solid lines
represent identified doublets.

events one through six. However, the P- and S-waveforms are
similar, suggesting it has a source mechanism similar to the
other events in the multiplet.

The medium-sized multiplets (three to seven events per
multiplet) have similar traces and comply with tests shown for
the multiplet of Figure 11. The amplitude variation of events
in the multiplets varies from a factor of three to 50. To the
best of our knowledge, this is a new observation, as previously
published observations in hydrocarbon reservoirs observed
multiplets with events of similar size (e.g., Rutledge et al.,

Figure 13. Three-component particle velocity seismograms for
the medium-sized multiplet 10 recorded on the first receiver
(four events). The numbers on the right side of each trace
correspond to the size of the true maximum amtitude (in mi-
crons/second) before rescalling to unit size for plotting. Seis-
mograms were low-pass filtered at 30 Hz. (a) x-component,
(b) y-component, (c) z-component.
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2004). Figure 13 shows the events of a multiplet where the ra-
tio of the maximum amplitude of event 2 to event 1 is 56, 30,
and 43 on the x-, y-, and z-components, respectively. The time
window for this multiplet is centered on the P-wave arrival be-
cause it has the largest amplitude for this receiver geometry
and source mechanism.

Figure 14 shows the y-component recordings of a medium-
sized multiplet (six events). The enlarged P-wave arrivals in
Figure 14b show the variation in P-wave arrival times (e.g.,
events 4 and 6). The inconsistent P-waveforms for events 1, 2,
and 3 are caused by noise (compare the maximum amplitudes
of events 1, 2, and 3 with events 4, 5, and 6). The plots on Fig-
ure 14a show all events aligned on the S-wave arrival; there-
fore, the variation in the P-wave arrival leads to the variation
in the P-to-S-wave traveltime. The time delay is 0.05 s shorter
for events 3 and 4 than for event 6. This variation implies that
event 6 is about 100 m away from events 3 and 4, yet they still
can be located relative to each other because of the similarity
of the P- and S-waveforms. This distance is an order of mag-
nitude larger distance than one-fourth of a wavelength sepa-
ration at the source region (estimated by Geller and Mueller,
1980), indicating this criterion is rather conservative.

The two largest multiplets, containing 31 and 30 events,
respectively, were the most complicated multiplets among

Figure 14. The component recordings of the particle veloc-
ity for the medium-sized multiplet 9 recorded at the third
receiver. The numbers on the right side of each trace (a) cor-
respond to the size of the true maximum ampitude (in mi-
crons/second) before rescaling to unit size for plotting. Seis-
mograms were low-pass filtered at 30 Hz. (b) Enlarged view,
showing the arrival of the P-waves.

those identified. The structure of the 30-event multiplet is il-
lustrated in Figure 15. Twenty-one highly similar events are
within 20 m of each other (their P- and S-waves are aligned
within 0.01 s). The remaining nine events are similar to only
some of the events in this cluster. The variation of maxi-
mum amplitude ratios within this multiplet is up to a factor
of 40. A possible interpretation of this multiplet is a repeated
(21 times) rupture of a main fault with nine ruptures branch-
ing off this main fault (but still along the same fault plane,
as the source mechanisms are similar). The P-to-S traveltime
varies for events 22–30 up to 0.07 s with respect to events one
through 21, indicating that the branching ruptures reached up
to 140 m away from the main fault. The 31-event multiplet is
more complex and consists of two large similar groups con-
taining 10 and 11 events each; these two submultiplets are con-
nected by only one event. There are also side branches of the
two main groups, similar to the branches in the 30-event mul-
tiplet. The two main groups in the 31-event multiplet can be
interpreted as two nearby, parallel, active faults.

DISCUSSION

Why do we observe such a large number of multiplets in
the microseismic events recorded during a passive seismic ex-
periment? According to Dyer et al. (1999), these events re-
flect subsidence of the overburden as a result of oil extrac-
tion (and decreased reservoir pressure). We can expect a large
number of events to be located on a few faults because the in-
duced events reflect quasi-static changes in the reservoir pres-
sure, not fluid or stress migration. Thus, our observation of a
large number of multiplets is consistent with blocks subsiding

Figure 15. Illustration of the connectivity of multiplet 6.
Events 1–21 are very well connected; each event has a min-
imum of three connections. Events 22–30 are doublets with
only 1 or 2 events from the cluster of events 1–21.
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along only a few seismically active faults, analogous to plate
tectonics on a different scale. The two large multiplets prob-
ably reflect the core of the two structures found by Dyer et
al. (1999). These two structures account for 61 out of the 259
events tested, or about one-fourth of the seismic activity.

CONCLUSIONS

The algorithm described in this study provides a fast, au-
tomatic procedure to identify multiplets in microseismic data
sets. Waveform similarity, which is measured using peak cross-
correlation coefficients, provides a means of identifying pairs
of events with similar source mechanisms and hypocenter lo-
cations (doublets). These doublets are grouped into multiplets
using graph theory. Using a synthetic data set evaluated for a
3D model, doublets are identified by the peak crosscorrelation
coefficient threshold. Noise in the data lowers the threshold of
doublet identification. This technique is applicable to events
with up to a 20% noise level.

We applied the multiplet detection algorithm to the Val-
hall passive seismic data set. The algorithm detected a large
number of similar events, implying that the number of abso-
lute locations required can be reduced by at least 40% using
a relative location algorithm. Most of the similar events are
located in seven clusters with spatial dimensions of less than
20 m. Two major active faults are rerupturing more than 20
times and account for one-fourth of the detected seismicity.
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