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Abstract: A methodology for the combined acoustic detection and dis-
crimination of explosions, which uses three discriminants, is developed
for the purpose of identifying weak explosion signals embedded in com-
plex background noise. By utilizing physical models for simple explo-
sions that are formulated as statistical hypothesis tests, the detection/
discrimination approach does not require a model for the background
noise, which can be highly complex and variable in practice. Fisher’s
Combined Probability Test is used to combine the p-values from all
multivariate discriminants. This framework is applied to acoustic data
from a 400 g explosion conducted at Los Alamos National Laboratory.
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1. Introduction

The detection of acoustic signals from explosions is a problem that can be trivial in the
case of large explosions recorded in the near field, but quickly becomes more challenging
as either the explosion size decreases or the offset range increases. For small and/or dis-
tant explosions, we require sophisticated detectors that exploit the different physical char-
acteristics of acoustic signals from explosions in order to identify such signals amongst
background noise (which may be larger in amplitude and contain some of the same phys-
ical characteristics). This same framework can also be used to distinguish between differ-
ent types of explosions, where a physical acoustic signature manifests such differences.

Many detectors use a null hypothesis that is based on a background noise
model where the noise is white and stationary (e.g., Kay, 1998). In reality, acoustic
noise characteristics are difficult to determine a priori and, since we are interested in
detecting a certain type of signal, we define null hypotheses that are based on the
expected physical characteristics of small explosions: short-duration, impulsive, broad-
band, coherent, all without making any assumptions on the background noise except
that is exists. Each detector is based on the same null hypothesis of signal plus noise
and a probability model is constructed for each test statistic. Fisher’s Combined Proba-
bility Test (Fisher, 1958) is then used to combine detections based on these separate
physical properties into a single detection value.

The main point of this paper is to demonstrate an approach to the multivari-
ate detector problem using a common hypothesis test, not the individual detectors. In
practice, orthogonal detectors should be chosen, each measuring a different characteris-
tic of the signal to be detected.

2. Methodology

This study explores the statistical combination of three physical discriminants for
identification of small explosions in acoustic data in a multivariate setting. The
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discriminants are individual detectors that are designed around the expected signal
characteristics from a small explosion recorded locally on an acoustic array or channel,
so that we use the terms discriminants and detectors interchangeably. The unifying
framework used in detector system design revolves around a single hypothesis-testing
approach developed by Anderson et al. (2007) for the Event Classification Matrix cur-
rently used for teleseismic and regional discrimination of earthquakes and nuclear
explosions. As stated by Anderson et al. (2007) in their article regarding multidimen-
sional seismic discriminants, “For each discriminant a probability model is formulated
under a general null hypothesis of H0: Explosion Characteristics. The veracity of the
hypothesized model is measured with a p-value calculation… A value near zero rejects
H0 and a moderate to large value indicates consistency with H0. The hypothesis test
formulation ensures that seismic phenomenology is tied to the interpretation of the
p-value.” Each discriminant is formulated in terms of a p-value, which provides a mea-
sure of the degree of membership of a given signal with the expected signal characteris-
tics of small explosions.

So what is a p-value in the context of signal detection? A p-value can be
thought of in many different ways, but in general it is the conditional probability that
a test statistic, Ts, is as extreme as the one actually observed if the null hypothesis is
true. In general, Ts for the signal exceeds that of the noise. By examining the mathe-
matical details of each detector it is possible to find a closed-form probability distribu-
tion function (pdf) used to construct the p-values under the null hypothesis. The pa-
rameters of the pdf can be found using a set of calibration data and/or theoretical
representations of the signal to be detected. In this paper, the signal will be that
expected from a small explosion, so we can formulate the null hypothesis as

H0 : signal þ noise (1)

(because there will always be noise contamination of the signal), where the signal has
explosion characteristics. Assuming we can model the signal with a closed-form pdf, we
define

pd ¼ PðH0jTsÞ ¼ FðTsÞ ¼
ðTs

0
f ðTÞ dT ; (2)

where pd is the probability of detection under H0, Ts is the observed test statistic, T is
a random variable representing the test statistic, and f(Ts) and F(Ts) are the assumed
pdf and cumulative distribution function (CDF) for Ts under H0. Note that the noise
pdf is never actually used but could be if the traditional binary hypothesis test involv-
ing likelihood ratios was desired. The reason we do not take this approach is because
this requires a noise model, which may be complicated in practice as noise in our con-
text is not pure Gaussian white noise. In fact, the noise includes background signals
from a variety of other transient and continuous sources (e.g., vehicles, lightning, wind
farms, etc.).

3. Individual discriminants (detectors)

Three detectors were utilized in this study: an array F, a short- to long-term average
(STA/LTA), and a spectrogram detector. Each detector measures a different signal
characteristic: signal coherence over an array over a short time span, a rapid increase
in power, and a broadband short-duration signal.

The first discriminant is an array F-detector that measures the ratio of beam
power on an array (where the beam is formed by time-aligning and stacking the wave-
forms from each array element over all directions of arrival such that the beam power
is maximized) to the residual power (Blandford, 1974). By using a short time-window
of 1 s, this discriminant identifies short-duration/high-frequency signals that may be
consistent with explosions. The F-detector is formulated as
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where J is the number of sensors, xjðnÞ is the waveform amplitude of the nth sample
of the mean-free time-series from sensor j, lj is the time-alignment lag obtained from
beamforming, n0 is the start sample index for the processing interval, and N is the
number of samples in the processing window. Following Blandford (1974), under
H0 : signal þ noise, F is distributed as a noncentral F-distribution such that, given
F ¼ Fi, we can calculate the p-value from

PfF ½N1;N2; kðS=NÞ� � Fig; (4)

where N1 ¼ 2BT , N2 ¼ 2BTðN � 1Þ, and k ¼ 2BTðS=NÞ2, where B is the bandwidth
(Hz), T is the time-window (s), and S/N is the signal-to-noise ratio chosen for defining
a detection. A p-value of <0.99 would indicate that H0 : signalþ noise for a given
processing time window is rejected.

The STA/LTA and spectrogram detector are described in Taylor et al. (2010).
The STA/LTA detector is simply a ratio of the mean square value of the signal in
short time window (X 2

s ) divided by a long time window (X 2
l ). It is assumed that for a

single channel, the STA/LTA follows a non-central F for H0,

X 2
s

X 2
l

� FðNs;Nl; kÞ; (5)

where Ns ¼ 2TsB is the degrees of freedom for the numerator, Nl ¼ 2TlB is the degrees of
freedom for the denominator, Ts and Tl are the length of the short- and long-term win-
dows, B is the bandwidth and k ¼ Ns(S/N)2 is the non-centrality parameter where S/N is
the signal-to-noise ratio. No assumptions regarding the noise power spectrum are made.

For the spectrogram detector of Taylor et al. (2010), small impulsive signals
are manifest as vertical stripes on spectrograms (Fig. 1) and can be enhanced on gray-
scale representations using vertical detection masks. Bitmap images are formed where
pixels above a defined threshold are set to one. A short-duration, large bandwidth
signal will have a large number of illuminated bits in the column corresponding to its
arrival time. The marginal distribution of bit counts as a function of time is formed,
ni, by summing column wise over frequency. For each time window a hypothesis test,
H0: signal þ noise is formed by defining a background density of ones, q1, expected
when a signal is present. The density represents the probability of success in a signal
window assuming that ni is a Bernoulli random variable. It is assumed that ni follows
the binomial distribution, allowing us to compute a probability of detection (repre-
sented as a p-value) for a given q1.

To construct the null hypothesis of the form H0: signal þ noise, the p-value
indicates the probability of detection computed from the binomial CDF as

pd ¼ FBðnijnf ; q1Þ ¼
Xni

i¼0

nf

i

� �
qi

1ð1� q1Þnf�i; (6)

which is the probability of observing up to ni bits in nf independent trials.
By the probability integral theorem, the p-values for signal detection will, in

general, be uniformly distributed between 0 and 1 under the null hypothesis of H0: sig-
nal þ noise (Rohatgi, 1976). The p-values can be treated as random variables drawn
from a uniform distribution on the interval [0,1]. A data fusion method based upon
Fisher’s Combined Probability Test is then used by defining the test statistic
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X 2 ¼ �2
Xk

i¼1

ln pi: (7)

Therefore, the sum of the natural logarithm of p-values given by Eq. (7) is given by a
v2 distribution with 2k degrees of freedom where k is the number of discriminants.

4. Dataset

This paper focuses on the acoustic measurement of a 400 g explosion conducted at the
Los Alamos National Laboratory Minie explosion test site. We chose to focus on this
shot because it represents a signal that is on the margin of detectability for existing sep-
arate detectors. During the course of our study, we have examined many shots, which
are not discussed in the paper for the sake of conciseness, but which all show an
improvement in the detector performance when combining the separate detectors. Of
course, for large shots the individual detectors already perform sufficiently and the com-
bination serves only to improve the discriminant power. The recording array (Pajarito
Lay Down Yard, PLDY), which was located at a range of 5.1 km from the explosion
site, comprised three IFS-3000 series Hyperion infrasound sensors. The Hyperion sen-
sors have a nominal sensitivity of 150 mV/Pa, dynamic range of 120 dB, and flat fre-
quency response over the frequency band studied in this paper (1–100 Hz). Data were
digitized by a Reftek RT-130 data acquisition system with a GPS time stamp. The
acoustic signal recorded at PLDY was low amplitude (peak pressure �0.3 Pa) and
obscured by environmental and manmade noise associated with traffic, construction,
and other sources (Fig. 1), making it a useful case study for this paper. We note that

Fig. 1. Explosion signal recorded on a single channel at the recording array and corresponding spectrogram.
The explosion signal, which is labeled, cannot be clearly differentiated by eye from the background noise at the
scale of the plot in either the time domain or time-frequency domain. The data are high-passed filtered using a
Butterworth filter and high-pass cutoff of 1 Hz.
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the signal amplitude is lower than that predicted for a free air explosion of the same
size recorded at 5.1 km according to standard semi-empirical pressure laws (ANSI,
1983) due to the shot configuration. However, since the focus of this paper is on detec-
tion of simple explosions we do not explore configuration effects here. Figure 1 clearly
illustrates that the explosion signal is impulsive and broadband, but that there are other
impulsive/broadband signals in the record that are not associated with explosions.

5. Results

The individual detection statistics for each of the detectors described in Sec. 3 are
shown in Fig. 2. Each detector performs differently and false detections are observed
for each in the 1 h time sample. We note that the detectors have been tuned to this sig-
nal for the purpose of this paper. Therefore, the results for individual detectors shown
here may be better than would be expected in practice, such that the combination of
detectors would be essential. Figure 2 shows that all detectors clearly detect the signal,
but also detect other events. Individual p-values were computed from the detection sta-
tistics using Eq. (2) and the combined using Eq. (7). Figure 3 shows the observed X2

values as a function of time and the horizontal dashed line is the critical value for a
detection at a¼ 0.99. The signal is clearly detected and there are no false detections in
this 1-h time window.

6. Conclusions

This paper has demonstrated the use of Fisher’s Combined Probability test to enhance the
detection/discrimination of acoustic signals from small explosions from a complicated
background that includes real noise and other types of signal. Each detector/discriminant
is quantified in terms of a null hypothesis that is based on a different model of the expected

Fig. 2. Detection statistics from top to bottom: Array F, STA/LTA, summed illuminated bins (spectrogram de-
tector) and signal filtered between 1 and 50 Hz (see text for details). Signal arrival shown by the vertical line (red
online).
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signal. Because these models are orthogonal (i.e., contain different information on the sig-
nal content), combining the detectors using Fisher’s Combined Probability test clearly
improves the identification of small explosion signals. Such an approach is necessary to
adequately detect small explosion signals in complex real-world scenarios.
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